Interfaces and Junctions in Nanoscale Bottom-Up Semiconductor Devices

نویسندگان

  • Yu-Chih Tseng
  • Vivek Subramanian
  • Steven G. Louie
  • Jeffrey Bokor
چکیده

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Abstract Interfaces and Junctions in Bottom-Up Nanoscale Semiconductor Devices A semiconductor device is a system composed of multiple materials, and its functionality depends on the junctions and interfaces between these materials. This dissertation documents a study of junctions and interfaces in one-dimensional nanoscale semiconductor materials. Examined are the insulator interface and the dopant profile in vapor-liquid-solid (VLS)-grown silicon nanowires, the electronic properties of the native surface of InAs nanowires grown using bottom-up methods, and metal-carbon nanotube (CNT) Schottky contacts. The capacitance-voltage (C-V) measurement is refined to examine these junctions and interfaces. For a Si nanowire, the C-V measurement shows that the density of trap states on its interface with Al 2 O 3 insulator ranges from ~10 11 /cm 2 ·eV in the midgap to ~10 13 /cm 2 ·eV closer to the valence band edge. The boron profile in Si nanowires is found to agree well with predictions from interstitial and vacanc y-assisted diffusion model, as in bulk Si. For an InAs nanowire, the C-V technique is used extract the trap density of its native surface, which is ~3.8x10 11 /cm 2 ·eV in the mid-gap and ~10 13 /cm 2 ·eV near the conduction band edge. The trap lifetime in 2 these InAs nanowires is extracted using the C-V method as well. Accurate measurement of the gate capacitance in back-gated InAs nanowires i s found to be necessary to determine accurately the electron mobility. The impact of metal-CNT Schottky contacts on the transistor performance and leakage is examined as well. It is found that both the on-state current and off-state leakage depend strongly on the Schottky Barrier Height (SBH) at the contacts. The scaling of the SBH with the CNT diameter shows that the length of the electrical junction is about 25nm. The metal-CNT Schottky junction is also studied using a new instrument capable of measuring rapid ly attofarad (10-18 F)-level capacitances. This study confirms the unpinned nature of the metal-CNT Schottky contact, and shows a way to directly determine …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon Nanotube “T Junctions”: Nanoscale Metal-Semiconductor-Metal Contact Devices

Stable “T junctions” of single-walled carbon nanotubes forming one of the smallest prototypes of microscopic metal-semiconductor-metal contacts are proposed. The structures have been found to be local minima of the total energy on relaxation with a generalized tight-binding molecular dynamics scheme. These quasi-2D junctions could be the building blocks of nanoscale tunnel junctions in a 2D net...

متن کامل

Interfacial Engineering of Semiconductor-Superconductor Junctions for High Performance Micro-Coolers.

The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, suc...

متن کامل

Functional nanoscale electronic devices assembled using silicon nanowire building blocks.

Because semiconductor nanowires can transport electrons and holes, they could function as building blocks for nanoscale electronics assembled without the need for complex and costly fabrication facilities. Boron- and phosphorous-doped silicon nanowires were used as building blocks to assemble three types of semiconductor nanodevices. Passive diode structures consisting of crossed p- and n-type ...

متن کامل

Charge transport in nanoscale vertical organic semiconductor pillar devices

We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust nanoscale junctions carrying high current densities (up to 106 A/m2). Current-voltage data modeling ...

متن کامل

Molecular Rotors as Switches

The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009